
Lists	vs.	Structures

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	6.1

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Module	Introduction

• In	this	module	we	will	learn	about	two	related	
topics:
– branching	structures,	such	as	trees
– mutually	recursive	data	definitions,	such	as	lists	of	
alternating	strings	and	numbers.

2

Module	Outline
• Lesson	6.1	begins	by	considering	alternative	
representations	for	sequence	information
– This	is	a	warm-up	for	Lessons	6.2-6.3	

• Lessons	6.2	and	6.3	show	how	to	represent	
information	that	has	a	naturally	branching	structure,	
such	as	trees

• Lesson	6.4	introduces	mutually-recursive	data	
definitions

• Lesson	6.5	applies	these	ideas	to	S-expressions
– S-expressions	are	nested	lists
– These	are	the	basis	for	XML	and	JSON

• Lesson	6.6	combines	all	these	ideas	into	a	case	study

3

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Module	06

4

Lesson	Introduction

• We've	already	studied	how	to	represent	
sequences	of	data	using	lists.		

• In	this	lesson,	we	will	explore	how	to	
represent	sequences	of	data	using	structures,	
like	those	we	studied	in	Week	1,	instead	of	
lists.		

• This	is	useful	because	many	widely-used	
languages	do	not	have	built-in	lists	that	we	
can	use.

5

Learning	Objectives	for	this	Lesson

• At	the	end	of	this	lesson	the	student	should	be	
able	to:
– convert	a	data	definition	using	the	ListOfX pattern	
to	a	recursive	data	definition	using	structures

– write	a	template	for	a	recursive	data	definition	
using	structures

6

Recall	our	pizzas
;; A Topping is a String.

;; A Pizza is a ListOfTopping
;; interp: a pizza is a list of toppings, listed from top to bottom

;; pizza-fn : Pizza -> ??
; Given a Pizza, produce
;; (define (pizza-fn p)
;; (cond
;; [(empty? p) ...]
;; [else (... (first p)
;; (pizza-fn (rest p)))]))

;; Examples:
(define plain-pizza empty)
(define cheese-pizza (list "cheese"))
(define anchovices-cheese-pizza (list "anchovies" "cheese")

7

In	Module	4,	we	represented	a	
pizza	as	a	list	of	toppings.	 	This	
week,	we	will	use	this	example	to	
study	the	structure	
representation.

What	if	Racket	didn't	have	cons?
• If	Racket	didn't	have	cons,	we	could	still	represent	pizzas	as	

mixed	data,	using	a	structure	to	represent	a	non-empty	pizza.		
• On	the	next	slide,	we'll	see	what	the	data	definition	would	

look	like.	
• We	haven't	written	the	template	yet;	we'll	get	to	that	soon.

8

What	if	Racket	didn't	have	cons?

We	could	still	write	a	data	definition:

(define-struct plain-pizza ())
(define-struct topped-pizza (topping base))

A Topping is a String.

A Pizza is either
-- (make-plain-pizza)
-- (make-topped-pizza Topping Pizza)
Interp:
(make-plain-pizza) represents a pizza with no toppings
(make-topped-pizza t p) represents a pizza like p,

but with topping t added on top.

9

This	representation,	using	a	
set	of	alternatives	each	of	
which	is	a	struct,	is	a	standard	
strategy,	sometimes	called	the	
"sum	of	products"	
representation.		HINT:		You	
won't	go	wrong	if	you	use	this	
as	your	default	representation	
for	data	in	Racket.

This	data	definition	is	self-referential

(define-struct topped-pizza (topping base))
A Topping is a String.
A Pizza is either
-- (make-plain-pizza)
-- (make-topped-pizza Topping Pizza)

10

compare:

A ListOfToppings is either
-- empty
-- (cons Topping ListOfToppings)

This	data	definition	
is	self-referential,	

just	like	
ListofToppingswas.

Examples
(make-plain-pizza)

(make-topped-pizza "cheese" (make-plain-pizza))

(make-topped-pizza "anchovies"
(make-topped-pizza "cheese" (make-plain-pizza))))

(make-topped-pizza "onions"
(make-topped-pizza "anchovies"
(make-topped-pizza "cheese" (make-plain-pizza))))))

11

Here	are	some	examples	of	
pizzas	according	to	our	new	
data	definition.

Can	you	see	why	each	of	these	 is	a	
Pizza,	according	to	our	new	

definition?

A Pizza is either
-- (make-plain-pizza)
-- (make-topped-pizza Topping Pizza)

Template	for	pizza	functions

pizza-fn : Pizza -> ??
(define (pizza-fn p)
(cond
[(plain-pizza? p) ...]
[else (... (topped-pizza-topping p)

(pizza-fn
(topped-pizza-base p)))]))

12

This	template	is	self-referential
pizza-fn : Pizza -> ??
(define (pizza-fn pizza)
(cond
[(plain-pizza? pizza) ...]
[else (... (topped-pizza-topping pizza)

(pizza-fn
(topped-pizza-base pizza)))]))

13

We	also	call	this	a	
recursive template

Lists	vs Structures:	Data	Definitions
A ListOfToppings (LoT) is
either

-- empty
-- (cons Topping LoT)

Interp:
-- empty means a pizza with

no toppings
-- (cons t p)
represents the pizza p with

topping t added on top.

A Pizza is either

-- (make-plain-pizza)
-- (make-topped-pizza

Topping Pizza)

Interp:
(make-plain-pizza) means a

pizza with no toppings
(make-topped-pizza t p)

represents the pizza p with
topping t added on top.

14

Observe	that	both	data	definitions	are	self-
referential	in	the	same	way.
You	could	represent	pizzas	either	by	 lists	or	
structures.

Lists	vs.	Structures:	Templates
pizza-fn : Pizza -> ??
(define (pizza-fn p)
(cond
[(empty? p)
...]
[else
(...
(first p)
(pizza-fn
(rest p)))]))

pizza-fn : Pizza -> ??
(define (pizza-fn p)
(cond
[(plain-pizza? p)
...]
[else
(...
(topped-pizza-
topping p)

(pizza-fn
(topped-pizza-base
p)))]))

15

And	here	are	the	templates.		Observe	
that	they	are	also	both	self-referential	
in	the	same	way.

Lists	vs.	Structures:	The	Choice
• Use	structures	for	compound	information	with	a	
fixed	size	or	fixed	number	of	components.

• Use	lists	for	homogeneous	sequences	of	data	
items.
– so	we'll	use	mostly	lists
– DON’T	use	lists	for	data	of	fixed	size	or	a	fixed	number	
of	components

• Each	language	has	its	own	idioms
– some	don't	have	lists	at	all
– some	have	other	ways	of	representing	sequences– use	
them	when	possible

16

Summary

• You	should	now	be	able	to
– convert	a	data	definition	using	the	ListOfX pattern	
to	a	recursive	data	definition	using	structures

– write	a	template	for	a	recursive	data	definition	
using	structures

17

Next	Steps

• Study	the	file	06-1-recursive-structures.rkt	in	
the	Examples	folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	6.1	
• Go	on	to	the	next	lesson

18

